Year 8 - Algebra \& Indices Summary Assignment

Name: \qquad
The first two columns of your task show the question number and a worked example that has already been solved by a student called Jack. Sometimes Jack got the question right \qquad other times it was wrong. \qquad The last column gives you a turn to answer a similar question.
Your job is to follow the three steps below:
Step 1: Study Jack's working out carefully and ask yourself why he answered the questions in this way.
Step 2: Answer questions and explain Jack's working out.
Step 3: Carefully answer the given questions including your working out.

	Step 1: Jack's Worked Examples	Step 2: Self-Explanation Prompt/ Student Notes	Step 3: Your Turn: Write Your Solution
1	$\begin{aligned} & \text { Evaluate } 9 p \text { when } p=3 \\ & =9(3) \\ & =27 \end{aligned}$	What operation is found between the number and pronumeral in this expression: $9 p$	Evaluate $10 p q$ when $p=2$ and $q=4.5$
2	$\begin{aligned} & \text { If } y=-1 \text { and } z=4, \text { evaluate: } \\ & \frac{y+z}{18} \\ & =\frac{(-1)+(4)}{18} \\ & =\frac{3}{18} \\ & =\frac{1}{6} \end{aligned}$	What did Jack do in his first step?	If $y=-5$ and $z=6$, evaluate: $\frac{y+z}{7}$

6	Expand the following two algebraic expressions: $2(x+3)$ $2(x+3)$ $=2(x+3)$ $=2(x)+2(3)$ $=2 x+6$	How does the distributive law apply to how Jack solves this question?	Expand the following two algebraic expressions:
$5(x+6)$			

8	Factorise the following expression: $\begin{aligned} & 4 y^{2}+12 y \\ & H C F=4 y \\ & 4 y(y+3) \end{aligned}$ Check your answer by expanding: $\begin{aligned} & 4 y(y+3) \\ = & 4 y(y)+4 y(3) \\ = & 4 y^{2}+7 y \end{aligned}$	What is different about the HCF in this factorisation question, compared to question 7 ? By what process is Jack checking his answer here?	Factorise the following expression: $16 y^{2}+2 y$ Check your answer by expanding:
9	What is the value of $\left(3^{4}\right)^{2}$ Leave your answer in index form. $\begin{aligned} & (3 \times 3 \times 3 \times 3)(3 \times 3) \\ & \left(3^{4}\right)^{2}=3^{6} \end{aligned}$	Can you explain to Jack where he went wrong in his solution to this problem?	What is the value of $\left(3^{3}\right)^{3}$ Leave your answer in index form.

10	What is the value of $3^{2} \times 3^{4}$ Leave your answer in index form. $\begin{aligned} 3^{2} \times 3^{4} & =3 \times 3^{(2+4)} \\ & =9^{6} \end{aligned}$	Jack incorrectly multiplied the base numbers together. Use your calculator to prove that this is incorrect. What should the answer be? Leave in index form.	What is the value of $3^{5} \times 3^{2}$ Leave your answer in index form.
11	Show $\left(2^{2}\right)^{4}$ in expanded form. $\begin{aligned} & \left(2^{2}\right)^{4} \\ = & 2^{2} \times 2^{2} \times 2^{2} \times 2^{2} \\ = & 2 \times 2 \\ = & 2^{8} \\ \therefore & \left(2^{2}\right)^{4}=2^{2 \times 4}=2^{8} \end{aligned}$	Why did Jack do this line of working?	Show ($\left.3^{2}\right)^{5}$ in expanded form.
12	Use a pattern to explain why a zero index is equal to 1 . Use these numbers: $3^{3}, 3^{2}, 3^{1}, 3^{0}$ $\begin{aligned} & 3^{3}=27 \\ & 3^{2}=9 \\ & 3^{1}=303 \\ & 3^{\circ}=12 \div 3 \end{aligned}$	What happens if the index is less than zero? Can you continue this pattern for $3^{-1}, 3^{-2}, 3^{-3}$	Use a pattern to explain why a zero index is equal to 1 . Use these numbers: $4^{3}, 4^{2}, 4^{1}, 4^{0}$

Outcome	Limited	Basic	Sound	High	Outstanding
MA4-1WM Communicates and connects mathematical ideas using appropriate terminology, diagrams, and symbols. (Self-explanation prompts)	Has completed three or less self-explanation prompts. OR self-explanation prompts are incorrect.	Has completed six or less self-explanation prompts. OR self-explanation prompts have errors.	Self-explanation prompts are mostly complete and correct. BUT have minimal use of mathematical language and keywords.	Self-explanation prompts are concise and use correct mathematical language. BUT contain some minimal errors.	Self-explanation prompts explain concepts using appropriate terminology, diagrams and symbols.
MA4-8NA Generalises number properties to operate with algebraic expressions. (Questions 1-8)	Has attempted two or less questions between questions 1-8.	Has attempted less than four questions between questions 1-8 OR has attempted all questions but has many mistakes or does not show mathematical working.	Completes five or more questions between questions 1-8 showing some mathematical working with some errors.	Completes all of questions 1-8 showing full mathematical working with minimal errors.	Completes all of questions 1-8 showing full mathematical working with no errors.
MA4-9NA Operates with positive-integer and zero indices of numerical bases. (Questions 9-12)	Has attempted none of the questions between 9-12.	Has attempted only one question between 9-12. OR has attempted all questions but has many mistakes or does not show any mathematical working.	Completes 2 or more questions 9-12 showing some mathematical working with some errors.	Completes all questions 9-12 showing full mathematical working with minimal errors.	Completes all of questions 9-12 showing full mathematical working with no errors.
Teacher Comment:					

