Year 8 - Algebra & Indices Summary Assignment

Name:

The first two columns of your task show the question number and a worked example that has already been solved by

a student called Jack. Sometimes Jack got the question right 🖌 other times it was wrong. 🗙 The last column

gives you a turn to answer a similar question.

Your job is to follow the three steps below:

Step 1: Study Jack's working out carefully and ask yourself why he answered the questions in this way.

Step 2: Answer questions and explain Jack's working out.

Step 3: Carefully answer the given questions including your working out.

	Step 1: Jack's Worked Examples	Step 2: Self-Explanation Prompt/ Student Notes	Step 3: Your Turn: Write Your Solution
1	Evaluate 9 <i>p</i> when <i>p</i> = 3 = 9(3) = 27	What operation is found between the number and pronumeral in this expression: 9 <i>p</i>	Evaluate $10pq$ when $p = 2$ and $q = 4.5$
2	If $y = -1$ and $z = 4$, evaluate: $\frac{y + z}{18}$ $= \frac{(-1) + (4)}{18}$ $= \frac{3}{18}$ $= \frac{1}{6}$	What did Jack do in his first step?	If $y = -5$ and $z = 6$, evaluate: $\frac{y + z}{7}$

3	Use the rule to complete the table of values: "The starting number is doubled, then 4 is subtracted".	How would the starting number need to change to have an answer of zero?	Use the rule to complete the table of values: "The starting number is tripled, then 5 is added".						
	Starting number 12 13 14 15 (N) Answer 20 22 24 26		Starting number (N) Answer (A)	0	1		2	3	
4	Complete the table of values for $y = x^2$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	How would the values of y change if the rule was $y = x^2 + 2$ instead?	Complete $y = x$ $x - 3$ y	x ³	table	of v	alues	for 2	3
5	Simplify this expression: 5-4x+2 5-4x+2 4x-5+2 4x-3	What did Jack do wrong in his first step? Would it have been okay to write $5 + 2 - 4x$? Explain why or why not.	Simplify 10 – 7 <i>x</i>		xpres	sion	:		

6	Expand the following two algebraic expressions:		Expand the following two algebraic expressions:
	2(x + 3) = $2(x + 3)$ = $2(x) + 2(3)$ = $2x + 6$	How does the distributive law apply to how Jack solves this question?	5(x+6)
	-2(x + 3) = -2(x + 3) = -2(x) + 2(3) = -2x + 6	What mistake did Jack make in his second last line of working out that caused him to get the wrong answer?	-5(x+2)
7	Factorise these expressions: 7hp + 14 H(F = 7) 7(hp + 2) -3x - 12 H(F = -3) -3(x + 4)	What does Jack mean when he writes "HCF = 7?"	Factorise these expressions: $3hp + 21$ $-4x - 8$

8	Factorise the following expression: $4y^2 + 12y$ H(F = Ay	What is different about the HCF in this factorisation question, compared to question 7?	Factorise the following expression: $16y^2 + 2y$
	4y (y + 3) 🗸		Check your answer by expanding:
	Check your answer by expanding: 4y(y+3) = $4y(y) + 4y(3)$ = $4y^{2} + 7y$	By what process is Jack checking his answer here?	
9	What is the value of $(3^4)^2$ Leave your answer in index form. $(3 \times 3 \times 3 \times 3)(3 \times 3)$ $(3^4)^2 = 3^2$	Can you explain to Jack where he went wrong in his solution to this problem?	What is the value of $(3^3)^3$ Leave your answer in index form.

10	What is the value of $3^2 \times 3^4$ Leave your answer in index form. $3^2 \times 3^4 = 3 \times 3^{(2+4)}$ $= 9^6$	Jack incorrectly multiplied the base numbers together. Use your calculator to prove that this is incorrect. What should the answer be? Leave in index form.	What is the value of $3^5 \times 3^2$ Leave your answer in index form.
11	Show $(2^2)^4$ in expanded form. $(2^2)^4$ $= 2^2 \times 2^2 \times 2^2 \times 2^2 \times 2^2$ $= 2 \times 2$ $= 2^8$ $\therefore (2^2)^4 = 2^{2 \times 4} = 2^8$	Why did Jack do this line of working?	Show (3 ²) ⁵ in expanded form.
12	Use a pattern to explain why a zero index is equal to 1. Use these numbers: 3^3 , 3^2 , 3^1 , 3^0 $3^3 = 27$ $3^4 = 9$ $3^4 = 32$ $3^5 = 32$ $3^5 = 32$ $3^5 = 32$ $3^5 = 32$ $3^5 = 32$ $3^5 = 32$	What happens if the index is less than zero? Can you continue this pattern for 3^{-1} , 3^{-2} , 3^{-3}	Use a pattern to explain why a zero index is equal to 1. Use these numbers: 4^3 , 4^2 , 4^1 , 4^0

Outcome	Limited	Basic	Sound	High	Outstanding
MA4-1WM	Has completed three or	Has completed six or	Self-explanation	Self-explanation	Self-explanation
Communicates and	less self-explanation	less self-explanation	prompts are mostly	prompts are concise	prompts explain
connects mathematical	prompts.	prompts.	complete and correct.	and use correct	concepts using
ideas using appropriate				mathematical language.	appropriate
terminology, diagrams,	OR self-explanation	OR self-explanation	BUT have minimal use		terminology, diagrams
and symbols.	prompts are incorrect.	prompts have errors.	of mathematical	BUT contain some	and symbols.
(Self-explanation			language and	minimal errors.	
prompts)			keywords.		
MA4-8NA Generalises	Has attempted two or	Has attempted less	Completes five or more	Completes all of	Completes all of
number properties to	less questions between	than four questions	questions between	questions 1-8 showing	questions 1-8 showing
operate with algebraic	questions 1-8.	between questions 1-8	questions 1-8 showing	full mathematical	full mathematical
expressions.			some mathematical	working with minimal	working with no errors.
(Questions 1-8)		OR has attempted all	working with some	errors.	-
		questions but has many	errors.		
		mistakes or does not			
		show mathematical			
		working.			
MA4-9NA Operates	Has attempted none of	Has attempted only one	Completes 2 or more	Completes all questions	Completes all of
with positive-integer	the questions between	question between 9-12.	questions 9-12 showing	9-12 showing full	questions 9-12 showing
and zero indices of	9-12.		some mathematical	mathematical working	full mathematical
numerical bases.		OR has attempted all	working with some	with minimal errors.	working with no errors.
(Questions 9-12)		questions but has many	errors.		
-		mistakes or does not			
		show any mathematical			
		working.			

Teacher Comment: